Die Gerade in der Ebene - Parameterdarstellung

Lösungsblatt 1

Die Gerade der Ebene wird *) durch einen Punkt und einen Richtungsvektor \vec{a} festgelegt: $X = X_1 + t \cdot \vec{a}$ *) durch zwei Punkte festgelegt: $\vec{X} = A + t \cdot \overrightarrow{AB}$

Die Gerade g wird durch die Punkte A (1/-4/) und B (4/-2/) festgelegt.

Geben Sie die Parameterdarstellung und die Normalvektorform dieser Geraden an!

g:
$$\vec{X} = A + t \cdot \overrightarrow{AB}$$
 \rightarrow $\overrightarrow{AB} = \vec{a} = \begin{vmatrix} 4-1 \\ -2-(-4) \end{vmatrix}$ \rightarrow $\vec{a} = \begin{vmatrix} +3 \\ +2 \end{vmatrix}$ \rightarrow Normalvektor $\vec{n} = \begin{vmatrix} -2 \\ +3 \end{vmatrix}$

Parameter form: \rightarrow g: $X = \begin{vmatrix} +1 \\ -4 \end{vmatrix} + t \cdot \begin{vmatrix} +3 \\ +2 \end{vmatrix}$;

Normalvektorform: \rightarrow g: $2 \times -3 \times y = +9$

Die Gerade h wird durch die Punkte R (+12/+8) und S (30/20) festgelegt.

Geben Sie die Parameterdarstellung und die Normalvektorform dieser Geraden an!

h:
$$\vec{X} = R + t \cdot \vec{RS}$$
 \rightarrow $\vec{RS} = \vec{r} = \begin{vmatrix} 30 - 12 \\ 20 - 8 \end{vmatrix}$ \rightarrow $\vec{a} = \begin{vmatrix} +18 \\ +12 \end{vmatrix}$ \rightarrow Normalvektor $\vec{n} = \begin{vmatrix} -12 \\ +18 \end{vmatrix}$

Parameter form: \rightarrow h: $X = \begin{vmatrix} +12 \\ +18 \end{vmatrix} + t \cdot \begin{vmatrix} +18 \\ +12 \end{vmatrix}$;

h:
$$\vec{X} = \begin{vmatrix} +12 \\ +18 \end{vmatrix} + t \cdot \begin{vmatrix} +18 \\ +12 \end{vmatrix} = \begin{vmatrix} -12 \\ +18 \end{vmatrix} \cdot \begin{vmatrix} -12 \\ +18 \end{vmatrix} \cdot \begin{vmatrix} -12 \\ +18 \end{vmatrix} \cdot \begin{vmatrix} -18 \\ +12 \end{vmatrix} + t \cdot \begin{vmatrix} +12 \\ +18 \end{vmatrix} \cdot \begin{vmatrix} -18 \\ +12 \end{vmatrix} = 0$$

$$\begin{vmatrix} -12 \\ +18 \end{vmatrix} \cdot \begin{vmatrix} x \\ y \end{vmatrix} = 0 + t \cdot 0 \quad \rightarrow \quad -12 \text{ x} + 18 \text{ y} = 0 \quad \rightarrow \quad +3 \text{ y} = +2 \text{ x}$$

Normalvektorform: \rightarrow h: +3 y = +2 x

Die Gerade f wird durch den Punkte M (+7/-3) und den Richtungsvektor $\overrightarrow{m} = \begin{vmatrix} +9 \\ 2 \end{vmatrix}$ festgelegt.

Geben Sie die Parameterdarstellung und die Normalvektorform dieser Geraden an!

f:
$$\vec{X} = M + t \cdot \vec{m}$$
 \rightarrow $\vec{m} = \vec{a} = \begin{vmatrix} +9 \\ 3 \end{vmatrix}$ \rightarrow Normalvektor $\vec{n} = \begin{vmatrix} +3 \\ +6 \end{vmatrix}$

f:
$$\vec{X} = M + t \cdot \vec{m}$$
 \rightarrow $\vec{m} = \vec{a} = \begin{vmatrix} +9 \\ -3 \end{vmatrix}$ \rightarrow Normalvektor $\vec{n} = \begin{vmatrix} +3 \\ +9 \end{vmatrix}$
Parameterform: \rightarrow f: $\vec{X} = \begin{vmatrix} +7 \\ -3 \end{vmatrix} + t \cdot \begin{vmatrix} +9 \\ -3 \end{vmatrix}$;
f: $\vec{X} = \begin{vmatrix} +7 \\ -3 \end{vmatrix} + t \cdot \begin{vmatrix} +9 \\ -3 \end{vmatrix}$ $\begin{vmatrix} +3 \\ +9 \end{vmatrix}$ $\begin{vmatrix} +3 \\ -3 \end{vmatrix} \cdot \vec{X} = \begin{vmatrix} +7 \\ -3 \end{vmatrix} \cdot \begin{vmatrix} +3 \\ +9 \end{vmatrix} + t \cdot \begin{vmatrix} +9 \\ -3 \end{vmatrix} \cdot \begin{vmatrix} +3 \\ +9 \end{vmatrix}$ \rightarrow $\begin{vmatrix} +3 \\ -3 \end{vmatrix} \cdot \begin{vmatrix} +3 \\ +9 \end{vmatrix} = (+27-27) = 0$
 $\begin{vmatrix} +3 \\ +9 \end{vmatrix} \cdot \begin{vmatrix} x \\ y \end{vmatrix} = \begin{vmatrix} +7 \\ -3 \end{vmatrix} \cdot \begin{vmatrix} +3 \\ +9 \end{vmatrix} + t \cdot 0$ \rightarrow $+3 \times +9 \times y = +21-27$

Normalvektorform: \rightarrow f: 3x + 9y = -6