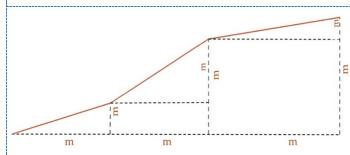
Maturabeispiele – Steigung und Maximum einer Bergstraße

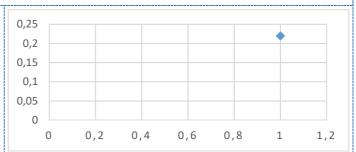
Arbeitsblatt 19

<u>%</u>

Für den Verlauf einer Bergstraße wird folgendes Profil in einer Tabelle notiert:

x . . . horizontale Entfernung in km;


g(x): y . . . Höhenunterschied zum Ausgangspunkt in m;


Stellen Sie den Sachverhalt in einer Skizze und als Funktionsgraphen dar!

Berechnen Sie den Steigungswinkel der Streckenteilstücke und den durchschnittlichen

Steigungswinkel der gesamten Strecke!

x in km	0	0,3	0,6	1
y in m	0	60	180	220

1.
$$k = --- = --- = ---$$

$$\alpha = \arctan = \circ$$

$$\alpha = \arctan = \circ$$

2.
$$k = \frac{}{} = \frac{}{} = \frac{}{}$$
 $\alpha = \arctan =$

$$\parallel$$
 $\alpha = \arctan = \circ$

Das Profil einer anderen Bergstraße kann durch folgende Funktion im Intervall [0 km; 1 km] dargestellt werden: f(x): $y = -0.32 \cdot x^3 + 0.48 \cdot x^2 + 0.072 \cdot x + 0.0072$; [0; 1]; Berechnen Sie jene Stelle der Funktion an der die Strecke eine maximale Steigung erreicht!

 $\| 3. \ \mathbf{k} = -$

Die Bergstraße hat <u>nach</u> <u>km</u> ihre maximale Steigung von